Difference between revisions of "User:Jon Awbrey/SEQUENCES"
Jon Awbrey (talk | contribs) |
Jon Awbrey (talk | contribs) |
||
Line 478: | Line 478: | ||
\end{array}</math> | \end{array}</math> | ||
| <math>\text{p}_{\text{p}^{\text{p}}}\!</math> | | <math>\text{p}_{\text{p}^{\text{p}}}\!</math> | ||
− | | | + | | [[Image:Riff 7 Big.jpg|38px]] |
| [[Image:Rote 7 Big.jpg|38px]] | | [[Image:Rote 7 Big.jpg|38px]] | ||
| <math>(((((~))))(~))</math> | | <math>(((((~))))(~))</math> | ||
Line 491: | Line 491: | ||
\end{array}</math> | \end{array}</math> | ||
| <math>\text{p}^{\text{p}_{\text{p}}}\!</math> | | <math>\text{p}^{\text{p}_{\text{p}}}\!</math> | ||
− | | | + | | [[Image:Riff 8 Big.jpg|38px]] |
| [[Image:Rote 8 Big.jpg|38px]] | | [[Image:Rote 8 Big.jpg|38px]] | ||
| <math>(((((~))(~))))</math> | | <math>(((((~))(~))))</math> | ||
Line 502: | Line 502: | ||
\end{array}</math> | \end{array}</math> | ||
| <math>\text{p}_\text{p}^\text{p}\!</math> | | <math>\text{p}_\text{p}^\text{p}\!</math> | ||
− | | | + | | [[Image:Riff 9 Big.jpg|24px]] |
| [[Image:Rote 9 Big.jpg|48px]] | | [[Image:Rote 9 Big.jpg|48px]] | ||
| <math>(((~))(((~))))</math> | | <math>(((~))(((~))))</math> | ||
Line 515: | Line 515: | ||
\end{array}</math> | \end{array}</math> | ||
| <math>\text{p}^{\text{p}^{\text{p}}}\!</math> | | <math>\text{p}^{\text{p}^{\text{p}}}\!</math> | ||
− | | | + | | [[Image:Riff 16 Big.jpg|38px]] |
| [[Image:Rote 16 Big.jpg|52px]] | | [[Image:Rote 16 Big.jpg|52px]] | ||
| <math>((((((~))))))</math> | | <math>((((((~))))))</math> |
Revision as of 16:54, 30 December 2009
A061396
Plain Wiki Table
Large Scale
Small Scale
Nested Wiki Table
Large Scale
Small Scale
| ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
|
Old ASCII Version
Illustration of initial terms of A061396 Jon Awbrey (jawbrey(AT)oakland.edu) o-------------------------------------------------------------------------------- | integer factorization riff r.i.f.f. rote --> in parentheses | k p's k nodes 2k+1 nodes o-------------------------------------------------------------------------------- | | 1 1 blank blank @ blank | o-------------------------------------------------------------------------------- | | o---o | | | 2 p_1^1 p @ @ (()) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | 3 p_2^1 = | | p_(p_1)^1 p_p @ @ ((())()) | ^ | \ | o | | o---o | o | | ^ o---o | 4 p_1^2 = / | | p_1^p_1 p^p @ @ (((()))) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | | | 5 p_3 = o---o | p_(p_2) = | | p_(p_(p_1)) p_(p_p) @ @ (((())())()) | ^ | \ | o | ^ | \ | o | | o-o | / | o-o o-o | 6 p_1 p_2 = \ / | p_1 p_(p_1) p p_p @ @ @ (())((())()) | ^ | \ | o | | o---o | | | o---o | | | 7 p_4 = o---o | p_(p_1^2) = | | p_(p_1^p_1) p_(p^p) @ o @ ((((())))()) | ^ ^ | \ / | o | | o---o | | | o---o | o | | 8 p_1^3 = ^ ^ o---o | p_1^p_2 = / \ | | p_1^p_(p_1) p^p_p @ o @ ((((())()))) | | o-o o-o | o | | | 9 p_2^2 = ^ o---o | p_(p_1)^2 = / | | p_(p_1)^(p_1) p_p^p @ @ ((())((()))) | ^ | \ | o | | o o---o | ^ | | / o---o | o | | 16 p_1^4 = ^ o---o | p_1^(p_1^2) = / | | p_1^(p_1^p_1) p^(p^p) @ @ (((((()))))) | o-------------------------------------------------------------------------------- Further Comments: Here are a couple more pages from my notes, where it looks like I first arrived at the generating function, and also carried out some brute force enumerations of riffs. I am going to experiment with a different way of transcribing indices and powers into a plaintext. | jj | p< | j / ji | p< p< etc. | i \ ij | p< | ii ------------------------------------------------------- 1978-11-06 Generating Function | R(x) = 1 + x + 2x^2 + ... | | = 1 + x.x^0 (1 + x + 2x^2 + ...) | . 1 + x.x^1 (1 + x + 2x^2 + ...) | . 1 + x.x^2 (1 + x + 2x^2 + ...) | . 1 + x.x^2 (1 + x + 2x^2 + ...) | . ... | | = 1 + x + 2x^2 + ... | | Product over (i = 0 to infinity) of (1 + x.x^i.R(x))^R_i = R(x) ------------------------------------------------------- 1978-11-10 Brute force enumeration of R_n | 4 p's | | p | p< p_p p p | p< p< p p_p p<_p p_p_p p_p< | p< p< p< p< p< p< | | | p | p< p_p p p | p_p< p_p< p< p_p<_p p_p_p_p p_p_p< | p p_p | | | p | p< p_p p p p p | p< p< p< p< p< p< p p< | p p p_p p^p p p | | | p p_p_p p p< | p^p | Altogether, 20 riffs of weight 4. | o---------------------o---------------------o---------------------o | | 3 | 4 | 5 | | o---------------------o---------------------o---------------------| | | // // 2 | 10, 3, 1, 6 | 36, 10, 2, 3, 2, 20 | | o---------------------o---------------------o---------------------| | | | 0^1 4^1, | | | | | 1^1 3^1, | | | | | 2^2, | | | | | 4^1 0^1 | | | o---------------------o---------------------o---------------------o | | 6 | 20 | 73 | | o---------------------o---------------------o---------------------o | ------------------------------------------------------- Here are the number values of the riffs on 4 nodes: o---------------------------------------------------------------------- | | p | p< p_p p p | p< p< p p_p p<_p p_p_p p_p< | p< p< p< p< p< p< | | 2^16 2^8 2^6 2^9 2^5 2^7 | 65536 256 64 512 32 128 o---------------------------------------------------------------------- | | p | p< p_p p p | p_p< p_p< p< p_p<_p p_p_p_p p_p_p< | p p_p | | p_16 p_8 p_6 p_9 p_5 p_7 | 53 19 13 23 11 17 o---------------------------------------------------------------------- | | p | p< p_p p p p | p< p< p< p< p^p p_p p p< | p p p_p p^p p | | 3^4 3^3 5^2 7^2 | 81 27 25 49 12 18 o---------------------------------------------------------------------- | | p p_p_p p p< | p^p | | 10 14 o---------------------------------------------------------------------- For ease of reference, I include the previous table of smaller riffs and rotes, redone in the new style. o-------------------------------------------------------------------------------- | integer factorization riff r.i.f.f. rote --> in parentheses | k p's k nodes 2k+1 nodes o-------------------------------------------------------------------------------- | | 1 1 blank blank @ blank | o-------------------------------------------------------------------------------- | | o---o | | | 2 p_1^1 p @ @ (()) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | 3 p_2^1 = | | p_(p_1)^1 p_p @ @ ((())()) | ^ | \ | o | | o---o | o | | ^ o---o | 4 p_1^2 = / | | p_1^p_1 p^p @ @ (((()))) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | | | 5 p_3 = o---o | p_(p_2) = | | p_(p_(p_1)) p_p_p @ @ (((())())()) | ^ | \ | o | ^ | \ | o | | o-o | / | o-o o-o | 6 p_1 p_2 = \ / | p_1 p_(p_1) p p_p @ @ @ (())((())()) | ^ | \ | o | | o---o | | | o---o | | | 7 p_4 = o---o | p_(p_1^2) = | | p_(p_1^p_1) p< @ o @ ((((())))()) | p^p ^ ^ | \ / | o | | o---o | | | o---o | o | | 8 p_1^3 = ^ ^ o---o | p_1^p_2 = p_p / \ | | p_1^p_(p_1) p< @ o @ ((((())()))) | | o-o o-o | o | | | 9 p_2^2 = ^ o---o | p_(p_1)^2 = p / | | p_(p_1)^(p_1) p< @ @ ((())((()))) | p ^ | \ | o | | o o---o | ^ | | / o---o | o | | 16 p_1^4 = p ^ o---o | p_1^(p_1^2) = p< / | | p_1^(p_1^p_1) p< @ @ (((((()))))) | o-------------------------------------------------------------------------------- (later) Expanded version of first table: o-------------------------------------------------------------------------------- | integer factorization riff r.i.f.f. rote --> in parentheses | k p's k nodes 2k+1 nodes o-------------------------------------------------------------------------------- | | 1 1 blank blank @ blank | o-------------------------------------------------------------------------------- | | o---o | | | 2 p_1^1 p @ @ (()) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | 3 p_2^1 = | | p_(p_1)^1 p_p @ @ ((())()) | ^ | \ | o | | o---o | o | | ^ o---o | 4 p_1^2 = / | | p_1^p_1 p^p @ @ (((()))) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | | | 5 p_3 = o---o | p_(p_2) = | | p_(p_(p_1)) p_p_p @ @ (((())())()) | ^ | \ | o | ^ | \ | o | | o-o | / | o-o o-o | 6 p_1 p_2 = \ / | p_1 p_(p_1) p p_p @ @ @ (())((())()) | ^ | \ | o | | o---o | | | o---o | | | 7 p_4 = o---o | p_(p_1^2) = | | p_(p_1^p_1) p< @ o @ ((((())))()) | p^p ^ ^ | \ / | o | | o---o | | | o---o | o | | 8 p_1^3 = ^ ^ o---o | p_1^p_2 = p_p / \ | | p_1^p_(p_1) p< @ o @ ((((())()))) | | o-o o-o | o | | | 9 p_2^2 = ^ o---o | p_(p_1)^2 = p / | | p_(p_1)^(p_1) p< @ @ ((())((()))) | p ^ | \ | o | | o o---o | ^ | | / o---o | o | | 16 p_1^4 = p ^ o---o | p_1^(p_1^2) = p< / | | p_1^(p_1^p_1) p< @ @ (((((()))))) | o-------------------------------------------------------------------------------- o================================================================================ | | p | p< p p_p p | p< p<_p p< p_p< p p_p p_p_p | p< p< p< p< p< p< | | 2^16 2^9 2^8 2^7 2^6 2^5 | 65536 512 256 128 64 32 | o-------------------------------------------------------------------------------- | | p | p< p p_p p | p_p< p_p<_p p_p< p_p_p< p< p_p_p_p | p p_p | | p_16 p_9 p_8 p_7 p_6 p_5 | 53 23 19 17 13 11 | o-------------------------------------------------------------------------------- | | p^p p_p p p | p< p< p< p< | p p p^p p_p | | 3^4 3^3 7^2 5^2 | 81 27 49 25 | o-------------------------------------------------------------------------------- | | p | p p< p p< p^p p_p p p_p_p | p p^p | | 18 14 12 10 | o================================================================================ Triangle in which k-th row lists natural number values for the collection of riffs with k nodes. k | natural numbers n such that |riff(n)| = k --o------------------------------------------------ 0 | 1; 1 | 2; 2 | 3, 4; 3 | 5, 6, 7, 8, 9, 16; 4 | 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, | 32, 49, 53, 64, 81, 128, 256, 512, 65536; The natural number values for the riffs with at most 3 pts are as follows (@'s are roots): | o o o o | | ^ | ^ | v | v | | o o o o o o o o o | | ^ | | | ^ | ^ ^ | v | v v v | v/ | | Riff: @; @, @; @, @ @, @, @, @, @; | | Value: 2; 3, 4; 5, 6 , 7, 8, 9, 16; --------------------------------------------------- 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536, --------------------------------------------------- 1; 2; 3, 4; 5, 6, 7, 8, 9, 16; 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536; ---------------------------------------------------
A109300
JPEG
\(\begin{array}{l} 2\!:\!1 \\ 3 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 \\ 4 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 \\ 6 \end{array}\) |
\(\begin{array}{l} 2\!:\!2 \\ 9 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 \\ 12 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!2 \\ 18 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!2 \\ 36 \end{array}\) |
ASCII
Example * Table of Rotes and Primal Functions for Positive Integers of Rote Height 2 * * o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | | | | | * o-o o-o o-o o-o o---o o-o o-o o-o o---o o-o o---o * | | | | | | | | | | | * O O O===O O O=====O O===O O=====O * * 2:1 1:2 1:1 2:1 2:2 1:2 2:1 1:1 2:2 1:2 2:2 * * 3 4 6 9 12 18 36 *
A109301
JPEG
\(\begin{array}{l} \varnothing \\ 1 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 \\ 2 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 \\ 3 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 \\ 4 \end{array}\) |
\(\begin{array}{l} 3\!:\!1 \\ 5 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 \\ 6 \end{array}\) |
\(\begin{array}{l} 4\!:\!1 \\ 7 \end{array}\) |
\(\begin{array}{l} 1\!:\!3 \\ 8 \end{array}\) |
\(\begin{array}{l} 2\!:\!2 \\ 9 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 3\!:\!1 \\ 10 \end{array}\) |
\(\begin{array}{l} 5\!:\!1 \\ 11 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 \\ 12 \end{array}\) |
\(\begin{array}{l} 6\!:\!1 \\ 13 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 4\!:\!1 \\ 14 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 ~~ 3\!:\!1 \\ 15 \end{array}\) |
\(\begin{array}{l} 1\!:\!4 \\ 16 \end{array}\) |
\(\begin{array}{l} 7\!:\!1 \\ 17 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!2 \\ 18 \end{array}\) |
\(\begin{array}{l} 8\!:\!1 \\ 19 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 3\!:\!1 \\ 20 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 ~~ 4\!:\!1 \\ 21 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 5\!:\!1 \\ 22 \end{array}\) |
\(\begin{array}{l} 9\!:\!1 \\ 23 \end{array}\) |
\(\begin{array}{l} 1\!:\!3 ~~ 2\!:\!1 \\ 24 \end{array}\) |
\(\begin{array}{l} 3\!:\!2 \\ 25 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 6\!:\!1 \\ 26 \end{array}\) |
\(\begin{array}{l} 2\!:\!3 \\ 27 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 4\!:\!1 \\ 28 \end{array}\) |
\(\begin{array}{l} 10\!:\!1 \\ 29 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 30 \end{array}\) |
\(\begin{array}{l} 11\!:\!1 \\ 31 \end{array}\) |
\(\begin{array}{l} 1\!:\!5 \\ 32 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 ~~ 5\!:\!1 \\ 33 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 7\!:\!1 \\ 34 \end{array}\) |
\(\begin{array}{l} 3\!:\!1 ~~ 4\!:\!1 \\ 35 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!2 \\ 36 \end{array}\) |
\(\begin{array}{l} 12\!:\!1 \\ 37 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 8\!:\!1 \\ 38 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 ~~ 6\!:\!1 \\ 39 \end{array}\) |
\(\begin{array}{l} 1\!:\!3 ~~ 3\!:\!1 \\ 40 \end{array}\) |
\(\begin{array}{l} 13\!:\!1 \\ 41 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 4\!:\!1 \\ 42 \end{array}\) |
\(\begin{array}{l} 14\!:\!1 \\ 43 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 5\!:\!1 \\ 44 \end{array}\) |
\(\begin{array}{l} 2\!:\!2 ~~ 3\!:\!1 \\ 45 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 9\!:\!1 \\ 46 \end{array}\) |
\(\begin{array}{l} 15\!:\!1 \\ 47 \end{array}\) |
\(\begin{array}{l} 1\!:\!4 ~~ 2\!:\!1 \\ 48 \end{array}\) |
\(\begin{array}{l} 4\!:\!2 \\ 49 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 3\!:\!2 \\ 50 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 ~~ 7\!:\!1 \\ 51 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 6\!:\!1 \\ 52 \end{array}\) |
\(\begin{array}{l} 16\!:\!1 \\ 53 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!3 \\ 54 \end{array}\) |
\(\begin{array}{l} 3\!:\!1 ~~ 5\!:\!1 \\ 55 \end{array}\) |
\(\begin{array}{l} 1\!:\!3 ~~ 4\!:\!1 \\ 56 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 ~~ 8\!:\!1 \\ 57 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 10\!:\!1 \\ 58 \end{array}\) |
\(\begin{array}{l} 17\!:\!1 \\ 59 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 60 \end{array}\) |
ASCII
Comment * Table of Rotes and Primal Functions for Positive Integers from 1 to 40 * * o-o * | * o-o o-o o-o * | | | * o-o o-o o-o o-o * | | | | * O O O O O * * { } 1:1 2:1 1:2 3:1 * * 1 2 3 4 5 * * * o-o o-o o-o * | | | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o-o o---o o-o o-o * | | | | | | | * O===O O O O O===O * * 1:1 2:1 4:1 1:3 2:2 1:1 3:1 * * 6 7 8 9 10 * * * o-o * | * o-o o-o o-o o-o * | | | | * o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | * o-o o-o o-o o===o-o o-o o-o o-o o-o * | | | | | | | | * O O=====O O O===O O===O * * 5:1 1:2 2:1 6:1 1:1 4:1 2:1 3:1 * * 11 12 13 14 15 * * * o-o o-o * | | * o-o o-o o-o o-o * | | | | * o-o o-o o-o o-o o-o o-o o-o * | | | | | | | * o-o o-o o-o o---o o-o o-o o-o * | | | | | | | * O O O===O O O=====O * * 1:4 7:1 1:1 2:2 8:1 1:2 3:1 * * 16 17 18 19 20 * * * o-o * | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o---o o-o o-o o-o o-o * | | | | | | | | * o-o o-o o-o o-o o-o o-o o-o o---o * | | | | | | | | * O===O O===O O O=====O O * * 2:1 4:1 1:1 5:1 9:1 1:3 2:1 3:2 * * 21 22 23 24 25 * * * o-o * | * o-o o-o o-o o-o o-o * | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | | | * o-o o===o-o o---o o-o o-o o===o-o o-o o-o o-o * | | | | | | | | | * O===O O O=====O O O===O===O * * 1:1 6:1 2:3 1:2 4:1 10:1 1:1 2:1 3:1 * * 26 27 28 29 30 * * * o-o * | * o-o o-o o-o o-o * | | | | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o-o o-o o-o o-o * | | | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | * O O O===O O===O O===O * * 11:1 1:5 2:1 5:1 1:1 7:1 3:1 4:1 * * 31 32 33 34 35 * * * o-o * | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | | | | * o-o o---o o=====o-o o-o o-o o-o o===o-o o-o o-o * | | | | | | | | | * O=====O O O===O O===O O=====O * * 1:2 2:2 12:1 1:1 8:1 2:1 6:1 1:3 3:1 * * 36 37 38 39 40 * * In these Figures, "extended lines of identity" like o===o * indicate identified nodes and capital O is the root node. * The rote height in gammas is found by finding the number * of graphs of the following shape between the root and one * of the highest nodes of the tree: * o--o * | * o * A sequence like this, that can be regarded as a nonnegative integer * measure on positive integers, may have as many as 3 other sequences * associated with it. Given that the fiber of a function f at n is all * the domain elements that map to n, we always have the fiber minimum * or minimum inverse function and may also have the fiber cardinality * and the fiber maximum or maximum inverse function. For A109301, the * minimum inverse is A007097(n) = min {k : A109301(k) = n}, giving the * first positive integer whose rote height is n, the fiber cardinality * is A109300, giving the number of positive integers of rote height n, * while the maximum inverse, g(n) = max {k : A109301(k) = n}, giving * the last positive integer whose rote height is n, has the following * initial terms: g(0) = { } = 1, g(1) = 1:1 = 2, g(2) = 1:2 2:2 = 36, * while g(3) = 1:36 2:36 3:36 4:36 6:36 9:36 12:36 18:36 36:36 = * (2 3 5 7 13 23 37 61 151)^36 = 21399271530^36 = roughly * 7.840858554516122655953405327738 x 10^371.
A111795
JPEG
\(\begin{array}{l} \varnothing \\ 1 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 \\ 2 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 \\ 3 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 \\ 4 \end{array}\) |
\(\begin{array}{l} 3\!:\!1 \\ 5 \end{array}\) |
\(\begin{array}{l} 4\!:\!1 \\ 7 \end{array}\) |
\(\begin{array}{l} 1\!:\!3 \\ 8 \end{array}\) |
\(\begin{array}{l} 5\!:\!1 \\ 11 \end{array}\) |
\(\begin{array}{l} 1\!:\!4 \\ 16 \end{array}\) |
\(\begin{array}{l} 7\!:\!1 \\ 17 \end{array}\) |
\(\begin{array}{l} 8\!:\!1 \\ 19 \end{array}\) |
\(\begin{array}{l} 11\!:\!1 \\ 31 \end{array}\) |
\(\begin{array}{l} 1\!:\!5 \\ 32 \end{array}\) |
\(\begin{array}{l} 16\!:\!1 \\ 53 \end{array}\) |
\(\begin{array}{l} 17\!:\!1 \\ 59 \end{array}\) |
ASCII
Example * Tables of Rotes and Primal Codes for a(1) to a(9) * * o-o * | * o-o o-o o-o o-o o-o * | | | | | * o-o o-o o-o o-o o-o o-o o-o * | | | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | * O O O O O O O O O * * { } 1:1 2:1 1:2 3:1 4:1 1:3 5:1 1:4 * * 1 2 3 4 5 7 8 11 16 *
A111800
TeX + JPEG
\(\text{Writing}~ \operatorname{prime}(i)^j ~\text{as}~ i\!:\!j, 2500 = 4 \cdot 625 = 2^2 5^4 = 1\!:\!2 ~~ 3\!:\!4 ~\text{has the following rote:}\)
\(\text{So}~ a(2500) = a(1\!:\!2 ~~ 3\!:\!4) = a(1) + a(2) + a(3) + a(4) + 1 = 1 + 3 + 5 + 5 + 1 = 15.\)
ASCII
Example * Writing prime(i)^j as i:j and using equal signs between identified nodes: * 2500 = 4 * 625 = 2^2 5^4 = 1:2 3:4 has the following rote: * * o-o o-o * | | * o-o o-o o-o * | | | * o-o o---o * | | * O=====O * * So a(2500) = a(1:2 3:4) = a(1)+a(2)+a(3)+a(4)+1 = 1+3+5+5+1 = 15.