Difference between revisions of "Directory talk:Jon Awbrey/Papers/Syntactic Transformations"

MyWikiBiz, Author Your Legacy — Sunday November 17, 2024
Jump to navigationJump to search
 
(One intermediate revision by the same user not shown)
Line 6: Line 6:
  
 
=====1.3.12.1.  Syntactic Transformation Rules=====
 
=====1.3.12.1.  Syntactic Transformation Rules=====
 
======Value Rules======
 
  
 
<pre>
 
<pre>
Line 145: Line 143:
  
 
E1d. (( f , g ))$(u). :$1b
 
E1d. (( f , g ))$(u). :$1b
</pre>
 
 
======Definitions======
 
 
<pre>
 
Definition 5
 
 
If X c U,
 
 
then the following are identical propositions:
 
 
D5a. {X}.
 
 
D5b. f : U -> B
 
 
: f(u) = [u C X], for all u C U.
 
</pre>
 
 
======Facts======
 
 
Applying Rule 9, Rule 8, and the Logical Rules to the special case where S <=> (X = Y), one obtains the following general fact.
 
 
<pre>
 
Fact 1
 
 
If X,Y c U,
 
 
then the following are equivalent:
 
 
F1a. S <=> X = Y. :R9a
 
 
::
 
 
F1b. S <=> {X} = {Y}. :R9b
 
 
::
 
 
F1c. S <=> {X}(u) = {Y}(u), for all u C U. :R9c
 
 
::
 
 
F1d. S <=> ConjUu ( {X}(u) = {Y}(u) ). :R9d
 
 
:R8a
 
 
::
 
 
F1e. [S] = [ ConjUu ( {X}(u) = {Y}(u) ) ]. :R8b
 
 
:???
 
 
::
 
 
F1f. [S] = ConjUu [ {X}(u) = {Y}(u) ]. :???
 
 
::
 
 
F1g. [S] = ConjUu (( {X}(u) , {Y}(u) )). :$1a
 
 
::
 
 
F1h. [S] = ConjUu (( {X} , {Y} ))$(u). :$1b
 
 
///
 
 
{u C U : (f, g)$(u)}
 
 
= {u C U : (f(u), g(u))}
 
 
= {u C
 
 
///
 
 
</pre>
 
</pre>
  

Latest revision as of 14:58, 12 September 2010

Alternate Version : Needs To Be Reconciled

1.3.12. Syntactic Transformations

1.3.12.1. Syntactic Transformation Rules
Value Rule 1

If	v, w	C	B

then	"v = w" is a sentence about <v, w> C B2,

	[v = w] is a proposition : B2 -> B,

and the following are identical values in B:

V1a.	[ v = w ](v, w)

V1b.	[ v <=> w ](v, w)

V1c.	((v , w))
Value Rule 1

If	v, w	C	B,

then the following are equivalent:

V1a.	v = w.

V1b.	v <=> w.

V1c.	(( v , w )).

A rule that allows one to turn equivalent sentences into identical propositions:

(S <=> T) <=> ([S] = [T])

Consider [ v = w ](v, w) and [ v(u) = w(u) ](u)

Value Rule 1

If	v, w	C	B,

then the following are identical values in B:

V1a.	[ v = w ]

V1b.	[ v <=> w ]

V1c.	(( v , w ))
Value Rule 1

If	f, g	:	U -> B,

and	u	C	U

then the following are identical values in B:

V1a.	[ f(u) = g(u) ]

V1b.	[ f(u) <=> g(u) ]

V1c.	(( f(u) , g(u) ))
Value Rule 1

If	f, g	:	U -> B,

then the following are identical propositions on U:

V1a.	[ f = g ]

V1b.	[ f <=> g ]

V1c.	(( f , g ))$
Evaluation Rule 1

If	f, g	:	U -> B

and	u	C	U,

then the following are equivalent:

E1a.	f(u) = g(u).	:V1a

				::

E1b.	f(u) <=> g(u).	:V1b

				::

E1c.	(( f(u) , g(u) )).	:V1c

				:$1a

				::

E1d.	(( f , g ))$(u).	:$1b
Evaluation Rule 1

If	S, T	are sentences

		about things in the universe U,

	f, g	are propositions: U -> B,

and	u	C	U,

then the following are equivalent:

E1a.	f(u) = g(u).	:V1a

				::

E1b.	f(u) <=> g(u).	:V1b

				::

E1c.	(( f(u) , g(u) )).	:V1c

				:$1a

				::

E1d.	(( f , g ))$(u).	:$1b
1.3.12.2. Derived Equivalence Relations
1.3.12.3. Digression on Derived Relations