Difference between revisions of "Multigrade operator"

MyWikiBiz, Author Your Legacy — Tuesday November 26, 2024
Jump to navigationJump to search
Line 149: Line 149:
 
[[Category:Peer Educational Resource]]
 
[[Category:Peer Educational Resource]]
 
[[Category:Automata Theory]]
 
[[Category:Automata Theory]]
 +
[[Category:Charles Sanders Peirce]]
 
[[Category:Combinatorics]]
 
[[Category:Combinatorics]]
 
[[Category:Computer Science]]
 
[[Category:Computer Science]]

Revision as of 18:43, 29 October 2011

This page belongs to resource collections on Logic and Inquiry.

In logic and mathematics, a multigrade operator \(\Omega\) is a parametric operator with parameter k in the set N of non-negative integers.

The application of a multigrade operator \(\Omega\) to a finite sequence of operands (x1, …, xk) is typically denoted with the parameter k left tacit, as the appropriate application is implicit in the number of operands listed. Thus \(\Omega\)(x1, …, xk) may be taken for \(\Omega\)k(x1, …, xk).

Syllabus

Focal nodes

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Peer nodes

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Relational concepts

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Information, Inquiry

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Related articles

Document history

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.

Template:Col-breakTemplate:Col-breakTemplate:Col-end
<sharethis />