Difference between revisions of "Truth table"
Jon Awbrey (talk | contribs) |
Jon Awbrey (talk | contribs) (update) |
||
(8 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
A '''truth table''' is a tabular array that illustrates the computation of a ''logical function'', that is, a function of the form <math>f : \mathbb{A}^k \to \mathbb{A},</math> where <math>k\!</math> is a non-negative integer and <math>\mathbb{A}</math> is the domain of logical values <math>\{ \operatorname{false}, \operatorname{true} \}.</math> The names of the logical values, or ''truth values'', are commonly abbreviated in accord with the equations <math>\operatorname{F} = \operatorname{false}</math> and <math>\operatorname{T} = \operatorname{true}.</math> | A '''truth table''' is a tabular array that illustrates the computation of a ''logical function'', that is, a function of the form <math>f : \mathbb{A}^k \to \mathbb{A},</math> where <math>k\!</math> is a non-negative integer and <math>\mathbb{A}</math> is the domain of logical values <math>\{ \operatorname{false}, \operatorname{true} \}.</math> The names of the logical values, or ''truth values'', are commonly abbreviated in accord with the equations <math>\operatorname{F} = \operatorname{false}</math> and <math>\operatorname{T} = \operatorname{true}.</math> | ||
− | In many applications it is usual to represent a truth function by a [[boolean function]], that is, a function of the form <math>f : \mathbb{B}^k \to \mathbb{B},</math> where <math>k\!</math> is a non-negative integer and <math>\mathbb{B}</math> is the [[boolean domain]] <math>\{ 0, 1 \}.\!</math> In most applications | + | In many applications it is usual to represent a truth function by a [[boolean function]], that is, a function of the form <math>f : \mathbb{B}^k \to \mathbb{B},</math> where <math>k\!</math> is a non-negative integer and <math>\mathbb{B}</math> is the [[boolean domain]] <math>\{ 0, 1 \}.\!</math> In most applications <math>\operatorname{false}</math> is represented by <math>0\!</math> and <math>\operatorname{true}</math> is represented by <math>1\!</math> but the opposite representation is also possible, depending on the overall representation of truth functions as boolean functions. The remainder of this article assumes the usual representation, taking the equations <math>\operatorname{F} = 0</math> and <math>\operatorname{T} = 1</math> for granted. |
==Logical negation== | ==Logical negation== | ||
Line 105: | Line 105: | ||
==Logical equality== | ==Logical equality== | ||
− | ''[[Logical equality]]'' is an | + | '''[[Logical equality]]''' is an operation on two logical values, typically the values of two propositions, that produces a value of ''true'' if and only if both operands are false or both operands are true. |
− | The truth table of | + | The truth table of <math>p ~\operatorname{EQ}~ q,</math> also written <math>p = q,\!</math> <math>p \Leftrightarrow q,\!</math> or <math>p \equiv q,\!</math> appears below: |
<br> | <br> | ||
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style=" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%" |
− | |+ | + | |+ style="height:30px" | <math>\text{Logical Equality}\!</math> |
− | |- style="background:# | + | |- style="height:40px; background:#f0f0ff" |
− | + | | style="width:33%" | <math>p\!</math> | |
− | + | | style="width:33%" | <math>q\!</math> | |
− | + | | style="width:33%" | <math>p = q\!</math> | |
|- | |- | ||
− | | F || F || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
|- | |- | ||
− | | F || T || F | + | | <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math> |
|- | |- | ||
− | | T || F || F | + | | <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math> |
|- | |- | ||
− | | T || T || T | + | | <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
|} | |} | ||
Line 131: | Line 131: | ||
==Exclusive disjunction== | ==Exclusive disjunction== | ||
− | ''[[Exclusive disjunction]]'', also known as ''logical inequality'' or ''symmetric difference'', is an | + | '''[[Exclusive disjunction]]''', also known as '''logical inequality''' or '''symmetric difference''', is an operation on two logical values, typically the values of two propositions, that produces a value of ''true'' just in case exactly one of its operands is true. |
− | The truth table of | + | The truth table of <math>p ~\operatorname{XOR}~ q,</math> also written <math>p + q\!</math> or <math>p \ne q,\!</math> appears below: |
<br> | <br> | ||
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style=" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%" |
− | |+ | + | |+ style="height:30px" | <math>\text{Exclusive Disjunction}\!</math> |
− | |- style="background:# | + | |- style="height:40px; background:#f0f0ff" |
− | + | | style="width:33%" | <math>p\!</math> | |
− | + | | style="width:33%" | <math>q\!</math> | |
− | + | | style="width:33%" | <math>p ~\operatorname{XOR}~ q</math> | |
|- | |- | ||
− | | F || F || F | + | | <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math> |
|- | |- | ||
− | | F || T || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
|- | |- | ||
− | | T || F || T | + | | <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
|- | |- | ||
− | | T || T || F | + | | <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math> |
|} | |} | ||
<br> | <br> | ||
− | The following equivalents | + | The following equivalents may then be deduced: |
− | + | {| align="center" cellspacing="10" width="90%" | |
− | p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) | + | | |
− | \\ | + | <math>\begin{matrix} |
− | & = & (p \lor q) & \land & (\lnot p \lor \lnot q) | + | p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) |
− | \\ | + | \\[6pt] |
+ | & = & (p \lor q) & \land & (\lnot p \lor \lnot q) | ||
+ | \\[6pt] | ||
& = & (p \lor q) & \land & \lnot (p \land q) | & = & (p \lor q) & \land & \lnot (p \land q) | ||
\end{matrix}</math> | \end{matrix}</math> | ||
+ | |} | ||
==Logical implication== | ==Logical implication== | ||
− | The ''[[logical implication]]'' and the '' | + | The '''[[logical implication]]''' relation and the '''material conditional''' function are both associated with an operation on two logical values, typically the values of two propositions, that produces a value of ''false'' if and only if the first operand is true and the second operand is false. |
− | The truth table associated with the material conditional | + | The truth table associated with the material conditional <math>\text{if}~ p ~\text{then}~ q,\!</math> symbolized <math>p \rightarrow q,\!</math> and the logical implication <math>p ~\text{implies}~ q,\!</math> symbolized <math>p \Rightarrow q,\!</math> appears below: |
<br> | <br> | ||
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style=" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%" |
− | |+ | + | |+ style="height:30px" | <math>\text{Logical Implication}\!</math> |
− | |- style="background:# | + | |- style="height:40px; background:#f0f0ff" |
− | + | | style="width:33%" | <math>p\!</math> | |
− | + | | style="width:33%" | <math>q\!</math> | |
− | + | | style="width:33%" | <math>p \Rightarrow q\!</math> | |
|- | |- | ||
− | | F || F || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
|- | |- | ||
− | | F || T || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
|- | |- | ||
− | | T || F || F | + | | <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math> |
|- | |- | ||
− | | T || T || T | + | | <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
|} | |} | ||
Line 193: | Line 196: | ||
==Logical NAND== | ==Logical NAND== | ||
− | The ''[[logical NAND]]'' is | + | The '''[[logical NAND]]''' is an operation on two logical values, typically the values of two propositions, that produces a value of ''false'' if and only if both of its operands are true. In other words, it produces a value of ''true'' if and only if at least one of its operands is false. |
− | The truth table of | + | The truth table of <math>p ~\operatorname{NAND}~ q,</math> also written <math>p \stackrel{\circ}{\curlywedge} q\!</math> or <math>p \barwedge q,\!</math> appears below: |
<br> | <br> | ||
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style=" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%" |
− | |+ | + | |+ style="height:30px" | <math>\text{Logical NAND}\!</math> |
− | |- style="background:# | + | |- style="height:40px; background:#f0f0ff" |
− | + | | style="width:33%" | <math>p\!</math> | |
− | + | | style="width:33%" | <math>q\!</math> | |
− | + | | style="width:33%" | <math>p \stackrel{\circ}{\curlywedge} q\!</math> | |
|- | |- | ||
− | | F || F || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
|- | |- | ||
− | | F || T || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
|- | |- | ||
− | | T || F || T | + | | <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
|- | |- | ||
− | | T || T || F | + | | <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math> |
|} | |} | ||
Line 219: | Line 222: | ||
==Logical NNOR== | ==Logical NNOR== | ||
− | The ''[[logical NNOR]]'' is | + | The '''[[logical NNOR]]''' (“Neither Nor”) is an operation on two logical values, typically the values of two propositions, that produces a value of ''true'' if and only if both of its operands are false. In other words, it produces a value of ''false'' if and only if at least one of its operands is true. |
− | The truth table of | + | The truth table of <math>p ~\operatorname{NNOR}~ q,</math> also written <math>p \curlywedge q,\!</math> appears below: |
<br> | <br> | ||
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style=" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%" |
− | |+ | + | |+ style="height:30px" | <math>\text{Logical NNOR}\!</math> |
− | |- style="background:# | + | |- style="height:40px; background:#f0f0ff" |
− | + | | style="width:33%" | <math>p\!</math> | |
− | + | | style="width:33%" | <math>q\!</math> | |
− | + | | style="width:33%" | <math>p \curlywedge q\!</math> | |
|- | |- | ||
− | | F || F || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
|- | |- | ||
− | | F || T || F | + | | <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math> |
|- | |- | ||
− | | T || F || F | + | | <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math> |
|- | |- | ||
− | | T || T || F | + | | <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math> |
|} | |} | ||
Line 251: | Line 254: | ||
===Focal nodes=== | ===Focal nodes=== | ||
− | |||
− | |||
* [[Inquiry Live]] | * [[Inquiry Live]] | ||
− | |||
* [[Logic Live]] | * [[Logic Live]] | ||
− | |||
===Peer nodes=== | ===Peer nodes=== | ||
− | + | * [http://intersci.ss.uci.edu/wiki/index.php/Truth_table Truth Table @ InterSciWiki] | |
− | |||
* [http://mywikibiz.com/Truth_table Truth Table @ MyWikiBiz] | * [http://mywikibiz.com/Truth_table Truth Table @ MyWikiBiz] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* [http://ref.subwiki.org/wiki/Truth_table Truth Table @ Subject Wikis] | * [http://ref.subwiki.org/wiki/Truth_table Truth Table @ Subject Wikis] | ||
+ | * [http://en.wikiversity.org/wiki/Truth_table Truth Table @ Wikiversity] | ||
* [http://beta.wikiversity.org/wiki/Truth_table Truth Table @ Wikiversity Beta] | * [http://beta.wikiversity.org/wiki/Truth_table Truth Table @ Wikiversity Beta] | ||
− | |||
===Logical operators=== | ===Logical operators=== | ||
Line 350: | Line 342: | ||
===Related articles=== | ===Related articles=== | ||
− | * [http:// | + | {{col-begin}} |
− | + | {{col-break}} | |
− | * [http:// | + | * [http://intersci.ss.uci.edu/wiki/index.php/Cactus_Language Cactus Language] |
− | + | * [http://intersci.ss.uci.edu/wiki/index.php/Futures_Of_Logical_Graphs Futures Of Logical Graphs] | |
− | * [http:// | + | * [http://intersci.ss.uci.edu/wiki/index.php/Propositional_Equation_Reasoning_Systems Propositional Equation Reasoning Systems] |
− | + | {{col-break}} | |
− | * [http:// | + | * [http://intersci.ss.uci.edu/wiki/index.php/Differential_Logic_:_Introduction Differential Logic : Introduction] |
− | + | * [http://intersci.ss.uci.edu/wiki/index.php/Differential_Propositional_Calculus Differential Propositional Calculus] | |
− | * [http:// | + | * [http://intersci.ss.uci.edu/wiki/index.php/Differential_Logic_and_Dynamic_Systems_2.0 Differential Logic and Dynamic Systems] |
− | + | {{col-break}} | |
− | * [http:// | + | * [http://intersci.ss.uci.edu/wiki/index.php/Prospects_for_Inquiry_Driven_Systems Prospects for Inquiry Driven Systems] |
− | + | * [http://intersci.ss.uci.edu/wiki/index.php/Introduction_to_Inquiry_Driven_Systems Introduction to Inquiry Driven Systems] | |
− | * [http:// | + | * [http://intersci.ss.uci.edu/wiki/index.php/Inquiry_Driven_Systems Inquiry Driven Systems : Inquiry Into Inquiry] |
− | + | {{col-end}} | |
− | * [http:// | ||
==Document history== | ==Document history== | ||
Line 370: | Line 361: | ||
Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders. | Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders. | ||
− | + | * [http://intersci.ss.uci.edu/wiki/index.php/Truth_table Truth Table], [http://intersci.ss.uci.edu/ InterSciWiki] | |
− | |||
* [http://mywikibiz.com/Truth_table Truth Table], [http://mywikibiz.com/ MyWikiBiz] | * [http://mywikibiz.com/Truth_table Truth Table], [http://mywikibiz.com/ MyWikiBiz] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
* [http://semanticweb.org/wiki/Truth_table Truth Table], [http://semanticweb.org/ SemanticWeb] | * [http://semanticweb.org/wiki/Truth_table Truth Table], [http://semanticweb.org/ SemanticWeb] | ||
+ | * [http://wikinfo.org/w/index.php/Truth_table Truth Table], [http://wikinfo.org/w/ Wikinfo] | ||
+ | * [http://en.wikiversity.org/wiki/Truth_table Truth Table], [http://en.wikiversity.org/ Wikiversity] | ||
* [http://beta.wikiversity.org/wiki/Truth_table Truth Table], [http://beta.wikiversity.org/ Wikiversity Beta] | * [http://beta.wikiversity.org/wiki/Truth_table Truth Table], [http://beta.wikiversity.org/ Wikiversity Beta] | ||
− | |||
− | |||
− | |||
− | |||
* [http://en.wikipedia.org/w/index.php?title=Truth_table&oldid=77110085 Truth Table], [http://en.wikipedia.org/ Wikipedia] | * [http://en.wikipedia.org/w/index.php?title=Truth_table&oldid=77110085 Truth Table], [http://en.wikipedia.org/ Wikipedia] | ||
− | |||
− | |||
− | |||
[[Category:Inquiry]] | [[Category:Inquiry]] |
Latest revision as of 03:25, 30 October 2015
☞ This page belongs to resource collections on Logic and Inquiry.
A truth table is a tabular array that illustrates the computation of a logical function, that is, a function of the form \(f : \mathbb{A}^k \to \mathbb{A},\) where \(k\!\) is a non-negative integer and \(\mathbb{A}\) is the domain of logical values \(\{ \operatorname{false}, \operatorname{true} \}.\) The names of the logical values, or truth values, are commonly abbreviated in accord with the equations \(\operatorname{F} = \operatorname{false}\) and \(\operatorname{T} = \operatorname{true}.\)
In many applications it is usual to represent a truth function by a boolean function, that is, a function of the form \(f : \mathbb{B}^k \to \mathbb{B},\) where \(k\!\) is a non-negative integer and \(\mathbb{B}\) is the boolean domain \(\{ 0, 1 \}.\!\) In most applications \(\operatorname{false}\) is represented by \(0\!\) and \(\operatorname{true}\) is represented by \(1\!\) but the opposite representation is also possible, depending on the overall representation of truth functions as boolean functions. The remainder of this article assumes the usual representation, taking the equations \(\operatorname{F} = 0\) and \(\operatorname{T} = 1\) for granted.
Logical negation
Logical negation is an operation on one logical value, typically the value of a proposition, that produces a value of true when its operand is false and a value of false when its operand is true.
The truth table of \(\operatorname{NOT}~ p,\) also written \(\lnot p,\!\) appears below:
\(p\!\) | \(\lnot p\!\) |
\(\operatorname{F}\) | \(\operatorname{T}\) |
\(\operatorname{T}\) | \(\operatorname{F}\) |
The negation of a proposition \(p\!\) may be found notated in various ways in various contexts of application, often merely for typographical convenience. Among these variants are the following:
\(\text{Notation}\!\) | \(\text{Vocalization}\!\) |
\(\bar{p}\!\) | \(p\!\) bar |
\(\tilde{p}\!\) | \(p\!\) tilde |
\(p'\!\) | \(p\!\) prime \(p\!\) complement |
\(!p\!\) | bang \(p\!\) |
Logical conjunction
Logical conjunction is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both of its operands are true.
The truth table of \(p ~\operatorname{AND}~ q,\) also written \(p \land q\!\) or \(p \cdot q,\!\) appears below:
\(p\!\) | \(q\!\) | \(p \land q\) |
\(\operatorname{F}\) | \(\operatorname{F}\) | \(\operatorname{F}\) |
\(\operatorname{F}\) | \(\operatorname{T}\) | \(\operatorname{F}\) |
\(\operatorname{T}\) | \(\operatorname{F}\) | \(\operatorname{F}\) |
\(\operatorname{T}\) | \(\operatorname{T}\) | \(\operatorname{T}\) |
Logical disjunction
Logical disjunction, also called logical alternation, is an operation on two logical values, typically the values of two propositions, that produces a value of false if and only if both of its operands are false.
The truth table of \(p ~\operatorname{OR}~ q,\) also written \(p \lor q,\!\) appears below:
\(p\!\) | \(q\!\) | \(p \lor q\) |
\(\operatorname{F}\) | \(\operatorname{F}\) | \(\operatorname{F}\) |
\(\operatorname{F}\) | \(\operatorname{T}\) | \(\operatorname{T}\) |
\(\operatorname{T}\) | \(\operatorname{F}\) | \(\operatorname{T}\) |
\(\operatorname{T}\) | \(\operatorname{T}\) | \(\operatorname{T}\) |
Logical equality
Logical equality is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both operands are false or both operands are true.
The truth table of \(p ~\operatorname{EQ}~ q,\) also written \(p = q,\!\) \(p \Leftrightarrow q,\!\) or \(p \equiv q,\!\) appears below:
\(p\!\) | \(q\!\) | \(p = q\!\) |
\(\operatorname{F}\) | \(\operatorname{F}\) | \(\operatorname{T}\) |
\(\operatorname{F}\) | \(\operatorname{T}\) | \(\operatorname{F}\) |
\(\operatorname{T}\) | \(\operatorname{F}\) | \(\operatorname{F}\) |
\(\operatorname{T}\) | \(\operatorname{T}\) | \(\operatorname{T}\) |
Exclusive disjunction
Exclusive disjunction, also known as logical inequality or symmetric difference, is an operation on two logical values, typically the values of two propositions, that produces a value of true just in case exactly one of its operands is true.
The truth table of \(p ~\operatorname{XOR}~ q,\) also written \(p + q\!\) or \(p \ne q,\!\) appears below:
\(p\!\) | \(q\!\) | \(p ~\operatorname{XOR}~ q\) |
\(\operatorname{F}\) | \(\operatorname{F}\) | \(\operatorname{F}\) |
\(\operatorname{F}\) | \(\operatorname{T}\) | \(\operatorname{T}\) |
\(\operatorname{T}\) | \(\operatorname{F}\) | \(\operatorname{T}\) |
\(\operatorname{T}\) | \(\operatorname{T}\) | \(\operatorname{F}\) |
The following equivalents may then be deduced:
\(\begin{matrix} p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\[6pt] & = & (p \lor q) & \land & (\lnot p \lor \lnot q) \\[6pt] & = & (p \lor q) & \land & \lnot (p \land q) \end{matrix}\) |
Logical implication
The logical implication relation and the material conditional function are both associated with an operation on two logical values, typically the values of two propositions, that produces a value of false if and only if the first operand is true and the second operand is false.
The truth table associated with the material conditional \(\text{if}~ p ~\text{then}~ q,\!\) symbolized \(p \rightarrow q,\!\) and the logical implication \(p ~\text{implies}~ q,\!\) symbolized \(p \Rightarrow q,\!\) appears below:
\(p\!\) | \(q\!\) | \(p \Rightarrow q\!\) |
\(\operatorname{F}\) | \(\operatorname{F}\) | \(\operatorname{T}\) |
\(\operatorname{F}\) | \(\operatorname{T}\) | \(\operatorname{T}\) |
\(\operatorname{T}\) | \(\operatorname{F}\) | \(\operatorname{F}\) |
\(\operatorname{T}\) | \(\operatorname{T}\) | \(\operatorname{T}\) |
Logical NAND
The logical NAND is an operation on two logical values, typically the values of two propositions, that produces a value of false if and only if both of its operands are true. In other words, it produces a value of true if and only if at least one of its operands is false.
The truth table of \(p ~\operatorname{NAND}~ q,\) also written \(p \stackrel{\circ}{\curlywedge} q\!\) or \(p \barwedge q,\!\) appears below:
\(p\!\) | \(q\!\) | \(p \stackrel{\circ}{\curlywedge} q\!\) |
\(\operatorname{F}\) | \(\operatorname{F}\) | \(\operatorname{T}\) |
\(\operatorname{F}\) | \(\operatorname{T}\) | \(\operatorname{T}\) |
\(\operatorname{T}\) | \(\operatorname{F}\) | \(\operatorname{T}\) |
\(\operatorname{T}\) | \(\operatorname{T}\) | \(\operatorname{F}\) |
Logical NNOR
The logical NNOR (“Neither Nor”) is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both of its operands are false. In other words, it produces a value of false if and only if at least one of its operands is true.
The truth table of \(p ~\operatorname{NNOR}~ q,\) also written \(p \curlywedge q,\!\) appears below:
\(p\!\) | \(q\!\) | \(p \curlywedge q\!\) |
\(\operatorname{F}\) | \(\operatorname{F}\) | \(\operatorname{T}\) |
\(\operatorname{F}\) | \(\operatorname{T}\) | \(\operatorname{F}\) |
\(\operatorname{T}\) | \(\operatorname{F}\) | \(\operatorname{F}\) |
\(\operatorname{T}\) | \(\operatorname{T}\) | \(\operatorname{F}\) |
Translations
Syllabus
Focal nodes
Peer nodes
- Truth Table @ InterSciWiki
- Truth Table @ MyWikiBiz
- Truth Table @ Subject Wikis
- Truth Table @ Wikiversity
- Truth Table @ Wikiversity Beta
Logical operators
Template:Col-breakTemplate:Col-breakTemplate:Col-endRelated topics
- Propositional calculus
- Sole sufficient operator
- Truth table
- Universe of discourse
- Zeroth order logic
Relational concepts
Information, Inquiry
Related articles
- Differential Logic : Introduction
- Differential Propositional Calculus
- Differential Logic and Dynamic Systems
- Prospects for Inquiry Driven Systems
- Introduction to Inquiry Driven Systems
- Inquiry Driven Systems : Inquiry Into Inquiry
Document history
Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.
- Truth Table, InterSciWiki
- Truth Table, MyWikiBiz
- Truth Table, SemanticWeb
- Truth Table, Wikinfo
- Truth Table, Wikiversity
- Truth Table, Wikiversity Beta
- Truth Table, Wikipedia