Difference between revisions of "Exclusive disjunction"

MyWikiBiz, Author Your Legacy — Monday December 02, 2024
Jump to navigationJump to search
(standardize syllabus & add document history)
Line 78: Line 78:
 
* [http://mywikibiz.com/Exclusive_disjunction Exclusive Disjunction], [http://mywikibiz.com/ MyWikiBiz]
 
* [http://mywikibiz.com/Exclusive_disjunction Exclusive Disjunction], [http://mywikibiz.com/ MyWikiBiz]
 
* [http://beta.wikiversity.org/wiki/Exclusive_disjunction Exclusive Disjunction], [http://beta.wikiversity.org/ Beta Wikiversity]
 
* [http://beta.wikiversity.org/wiki/Exclusive_disjunction Exclusive Disjunction], [http://beta.wikiversity.org/ Beta Wikiversity]
* [http://www.getwiki.net/-Exclusive_disjunction Exclusive Disjunction], [http://www.getwiki.net/ GetWiki]
+
* [http://www.getwiki.net/-Exclusive_Disjunction Exclusive Disjunction], [http://www.getwiki.net/ GetWiki]
 
{{col-break}}
 
{{col-break}}
 
* [http://www.wikinfo.org/index.php/Exclusive_disjunction Exclusive Disjunction], [http://www.wikinfo.org/ Wikinfo]
 
* [http://www.wikinfo.org/index.php/Exclusive_disjunction Exclusive Disjunction], [http://www.wikinfo.org/ Wikinfo]
 
* [http://www.textop.org/wiki/index.php?title=Exclusive_disjunction Exclusive Disjunction], [http://www.textop.org/wiki/ Textop Wiki]
 
* [http://www.textop.org/wiki/index.php?title=Exclusive_disjunction Exclusive Disjunction], [http://www.textop.org/wiki/ Textop Wiki]
* [http://en.wikipedia.org/w/index.php?title=Exclusive_disjunction Exclusive Disjunction], [http://en.wikipedia.org/ Wikipedia]
+
* [http://en.wikipedia.org/w/index.php?title=Exclusive_or&oldid=75153068 Exclusive Disjunction], [http://en.wikipedia.org/ Wikipedia]
 
{{col-end}}
 
{{col-end}}
  

Revision as of 01:22, 6 April 2010

Exclusive disjunction, also known as logical inequality or symmetric difference, is an operation on two logical values, typically the values of two propositions, that produces a value of true just in case exactly one of its operands is true.

The truth table of p XOR q (also written as p + q or p ≠ q) is as follows:


Exclusive Disjunction
p q p XOR q
F F F
F T T
T F T
T T F


The following equivalents can then be deduced:

\[\begin{matrix} p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\ \\ & = & (p \lor q) & \land & (\lnot p \lor \lnot q) \\ \\ & = & (p \lor q) & \land & \lnot (p \land q) \end{matrix}\]

Syllabus

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Document history

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.

Template:Col-breakTemplate:Col-breakTemplate:Col-end
<sharethis />