Difference between revisions of "Logical negation"

MyWikiBiz, Author Your Legacy — Friday November 29, 2024
Jump to navigationJump to search
(+ {{aficionados}} <sharethis /> + categories)
(apply column template)
Line 35: Line 35:
  
 
==See also==
 
==See also==
 +
 
===Logical operators===
 
===Logical operators===
{|
+
 
| valign=top |
+
{{col-begin}}
 +
{{col-break}}
 
* [[Exclusive disjunction]]
 
* [[Exclusive disjunction]]
 
* [[Logical conjunction]]
 
* [[Logical conjunction]]
 
* [[Logical disjunction]]
 
* [[Logical disjunction]]
 
* [[Logical equality]]
 
* [[Logical equality]]
| valign=top |
+
{{col-break}}
 
* [[Logical implication]]
 
* [[Logical implication]]
 
* [[Logical NAND]]
 
* [[Logical NAND]]
 
* [[Logical NNOR]]
 
* [[Logical NNOR]]
 
* [[Logical negation|Negation]]
 
* [[Logical negation|Negation]]
|}
+
{{col-end}}
 +
 
 
===Related topics===
 
===Related topics===
{|
+
 
| valign=top |
+
{{col-begin}}
 +
{{col-break}}
 
* [[Ampheck]]
 
* [[Ampheck]]
 
* [[Boolean algebra]]
 
* [[Boolean algebra]]
 
* [[Boolean domain]]
 
* [[Boolean domain]]
 
* [[Boolean function]]
 
* [[Boolean function]]
| valign=top |
+
{{col-break}}
 
* [[Boolean logic]]
 
* [[Boolean logic]]
 
* [[Laws of Form]]
 
* [[Laws of Form]]
 
* [[Logic gate]]
 
* [[Logic gate]]
 
* [[Logical graph]]
 
* [[Logical graph]]
| valign=top |
+
{{col-break}}
 
* [[Peirce's law]]
 
* [[Peirce's law]]
 
* [[Propositional calculus]]
 
* [[Propositional calculus]]
 
* [[Sole sufficient operator]]
 
* [[Sole sufficient operator]]
 
* [[Zeroth order logic]]
 
* [[Zeroth order logic]]
|}
+
{{col-end}}
 
 
{{aficionados}}<sharethis />
 
  
 
[[Category:Computer Science]]
 
[[Category:Computer Science]]
Line 78: Line 80:
 
[[Category:Philosophy]]
 
[[Category:Philosophy]]
 
[[Category:Semiotics]]
 
[[Category:Semiotics]]
 +
 +
<sharethis />

Revision as of 14:26, 25 May 2009

Logical negation is an operation on one logical value, typically the value of a proposition, that produces a value of true when its operand is false and a value of false when its operand is true.

The truth table of NOT p (also written as ~p or ¬p) is as follows:

Logical Negation
p ¬p
F T
T F


The logical negation of a proposition p is notated in different ways in various contexts of discussion and fields of application. Among these variants are the following:

Variant Notations
Notation Vocalization
\(\bar{p}\) bar p
\(p'\!\) p prime,

p complement

\(!p\!\) bang p


See also

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end <sharethis />