Difference between revisions of "Directory talk:Jon Awbrey/Papers/Inquiry Driven Systems : Part 6"

MyWikiBiz, Author Your Legacy — Thursday December 05, 2024
Jump to navigationJump to search
Line 522: Line 522:
  
 
===Sign Relations===
 
===Sign Relations===
 
====Completed Work====
 
  
 
<br>
 
<br>
Line 1,815: Line 1,813:
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|}
 
|}
 
<br>
 
 
====Current Work====
 
  
 
<br>
 
<br>
Line 2,014: Line 2,008:
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|}
 
|}
 
<br>
 
 
<pre>
 
Table 48.3  ER (Con A):  Connotative Component of A
 
Sign Interpretant Transition
 
<A> <A> <<A>, <A>>
 
<A> <i> <<A>, <i>>
 
<i> <A> <<i>, <A>>
 
<i> <i> <<i>, <i>>
 
<B> <B> <<B>, <B>>
 
<B> <u> <<B>, <u>>
 
<u> <B> <<u>, <B>>
 
<u> <u> <<u>, <u>>
 
</pre>
 
  
 
<br>
 
<br>
Line 2,224: Line 2,203:
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|}
 
|}
 
<br>
 
 
<pre>
 
Table 49.3  ER (Con B):  Connotative Component of B
 
Sign Interpretant Transition
 
<A> <A> <<A>, <A>>
 
<A> <u> <<A>, <u>>
 
<u> <A> <<u>, <A>>
 
<u> <u> <<u>, <u>>
 
<B> <B> <<B>, <B>>
 
<B> <i> <<B>, <i>>
 
<i> <B> <<i>, <B>>
 
<i> <i> <<i>, <i>>
 
</pre>
 
  
 
<br>
 
<br>

Revision as of 18:16, 14 September 2012

Discussion

Scrap Area

Edit Buffer

When it comes to the subject of systems theory, a particular POV is so widely propagated that it might as well be regarded as the established, received, or traditional POV. The POV in question says that there are dynamic systems and symbolic systems, and never the twain shall meet. I naturally intend to challenge this assumption, preferring to suggest that dynamic …

Table Scraps

Table 37.1  Sign Relational Schema C
	Object	Sign	Interpretant
	x	"x"	"x"
	"x"	"x"	"x"
Table 37.2  Sign Relational Schema D
	Object	Sign	Interpretant
	x	"x"	"x"
Table 37.3  Sign Relational Schema E
	Object	Sign	Interpretant
	"x"	"x"	"x"
Table 37.4  Sign Relational Schema D'
	Object	Sign	Interpretant
	x	"x"	"x"
	x	"x"	<x>
	x	<x>	"x"
	x	<x>	<x>

Work Area

Alternate Text

A semigroup consists of a nonempty set with an associative LOC on it. On formal occasions, a semigroup is introduced by means a formula like \(X = (X, *),\!\) interpreted to mean that a semigroup \(X\!\) is specified by giving two pieces of data, a nonempty set that conventionally, if somewhat ambiguously, goes under the same name \({}^{\backprime\backprime} X {}^{\prime\prime},\!\) plus an associative binary operation denoted by \({}^{\backprime\backprime} * {}^{\prime\prime}.\!\) In contexts where there is only one semigroup being discussed, or where the additional structure is otherwise understood, it is common practice to call the semigroup by the name of the underlying set. In contexts where more than one semigroup is formed on the same set, one may use notations like \(X_i = (X, *_i)\!\) to distinguish them.

Additive Presentation

Version 1

The \(n^\text{th}\!\) multiple of an element \(x\!\) in a semigroup \(\underline{X} = (X, +, 0),\!\) for integer \(n > 0,\!\) is notated as \(nx\!\) and defined as follows. Proceeding recursively, for \(n = 1,\!\) let \(1x = x,\!\) and for \(n > 1,\!\) let \(nx = (n-1)x + x.\!\)
The \(n^\text{th}\!\) multiple of \(x\!\) in a monoid \(\underline{X} = (X, +, 0),\!\) for integer \(n \ge 0,\!\) is defined the same way for \(n > 0,\!\) letting \(0x = 0\!\) when \(n = 0.\!\)
The \(n^\text{th}\!\) multiple of \(x\!\) in a group \(\underline{X} = (X, +, 0),\!\) for any integer \(n,\!\) is defined the same way for \(n \ge 0,\!\) letting \(nx = (-n)(-x)\!\) for \(n < 0.\!\)

Version 2

In a semigroup written additively, the \(n^\text{th}\!\) multiple of an element \(x\!\) is notated as \(nx\!\) and defined for every positive integer \(n\!\) in the following manner. Proceeding recursively, let \(1x = x\!\) and let \(nx = (n-1)x + x\!\) for all \(n > 1.\!\)
In a monoid written additively, the multiple \(nx\!\) is defined for every non-negative integer \(n\!\) by letting \(0x = 0\!\) and proceeding the same way for \(n > 0.\!\)
In a group written additively, the multiple \(nx\!\) is defined for every integer \(n\!\) by letting \(nx = (-n)(-x)\!\) for \(n < 0\!\) and proceeding the same way for \(n \ge 0.\!\)

Set Displays

\(\begin{smallmatrix} \text{A} & = & \{ & (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), & \ldots, & (\text{A}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}) & , & (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), & \ldots, & (\text{B}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}) & \} \\[10pt] \text{B} & = & \{ & (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), & \ldots, & (\text{A}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}) & , & (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), & \ldots, & (\text{B}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}) & \} \end{smallmatrix}\)


\(\begin{array}{lllllll} \text{A} & = & \{ & (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), & \ldots, & (\text{A}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}), & \\ & & & (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), & \ldots, & (\text{B}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}) & \} \\[10pt] \text{B} & = & \{ & (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), & \ldots, & (\text{A}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}), & \\ & & & (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), & \ldots, & (\text{B}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}) & \} \end{array}\)

Table Work

Group Operations


\(\text{Table 32.1}~~\text{Scheme of a Group Operation Table}\)
\(*\!\) \(x_0\!\) \(\cdots\!\) \(x_j\!\) \(\cdots\!\)
\(x_0\!\) \(x_0 * x_0\!\) \(\cdots\!\) \(x_0 * x_j\!\) \(\cdots\!\)
\(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\)
\(x_i\!\) \(x_i * x_0\!\) \(\cdots\!\) \(x_i * x_j\!\) \(\cdots\!\)
\(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\)


\(\text{Table 32.2}~~\text{Scheme of the Regular Ante-Representation}\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(x_0\!\) \(\{\!\) \((x_0 ~,~ x_0 * x_0),\!\) \(\cdots\!\) \((x_j ~,~ x_0 * x_j),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)
\(x_i\!\) \(\{\!\) \((x_0 ~,~ x_i * x_0),\!\) \(\cdots\!\) \((x_j ~,~ x_i * x_j),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)


\(\text{Table 32.3}~~\text{Scheme of the Regular Post-Representation}\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(x_0\!\) \(\{\!\) \((x_0 ~,~ x_0 * x_0),\!\) \(\cdots\!\) \((x_j ~,~ x_j * x_0),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)
\(x_i\!\) \(\{\!\) \((x_0 ~,~ x_0 * x_i),\!\) \(\cdots\!\) \((x_j ~,~ x_j * x_i),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)


\(\text{Table 33.1}~~\text{Multiplication Operation of the Group}~V_4\)
\(\cdot\!\) \(\operatorname{e}\) \(\operatorname{f}\) \(\operatorname{g}\) \(\operatorname{h}\)
\(\operatorname{e}\) \(\operatorname{e}\) \(\operatorname{f}\) \(\operatorname{g}\) \(\operatorname{h}\)
\(\operatorname{f}\) \(\operatorname{f}\) \(\operatorname{e}\) \(\operatorname{h}\) \(\operatorname{g}\)
\(\operatorname{g}\) \(\operatorname{g}\) \(\operatorname{h}\) \(\operatorname{e}\) \(\operatorname{f}\)
\(\operatorname{h}\) \(\operatorname{h}\) \(\operatorname{g}\) \(\operatorname{f}\) \(\operatorname{e}\)


\(\text{Table 33.2}~~\text{Regular Representation of the Group}~V_4\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(\operatorname{e}\) \(\{\!\) \((\operatorname{e}, \operatorname{e}),\) \((\operatorname{f}, \operatorname{f}),\) \((\operatorname{g}, \operatorname{g}),\) \((\operatorname{h}, \operatorname{h})\) \(\}\!\)
\(\operatorname{f}\) \(\{\!\) \((\operatorname{e}, \operatorname{f}),\) \((\operatorname{f}, \operatorname{e}),\) \((\operatorname{g}, \operatorname{h}),\) \((\operatorname{h}, \operatorname{g})\) \(\}\!\)
\(\operatorname{g}\) \(\{\!\) \((\operatorname{e}, \operatorname{g}),\) \((\operatorname{f}, \operatorname{h}),\) \((\operatorname{g}, \operatorname{e}),\) \((\operatorname{h}, \operatorname{f})\) \(\}\!\)
\(\operatorname{h}\) \(\{\!\) \((\operatorname{e}, \operatorname{h}),\) \((\operatorname{f}, \operatorname{g}),\) \((\operatorname{g}, \operatorname{f}),\) \((\operatorname{h}, \operatorname{e})\) \(\}\!\)


\(\text{Table 33.3}~~\text{Regular Representation of the Group}~V_4\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Symbols}\!\)
\(\operatorname{e}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime})\) \(\}\!\)
\(\operatorname{f}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime})\) \(\}\!\)
\(\operatorname{g}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime})\) \(\}\!\)
\(\operatorname{h}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime})\) \(\}\!\)


\(\text{Table 34.1}~~\text{Multiplicative Presentation of the Group}~Z_4(\cdot)\)
\(\cdot\!\) \(\operatorname{1}\) \(\operatorname{a}\) \(\operatorname{b}\) \(\operatorname{c}\)
\(\operatorname{1}\) \(\operatorname{1}\) \(\operatorname{a}\) \(\operatorname{b}\) \(\operatorname{c}\)
\(\operatorname{a}\) \(\operatorname{a}\) \(\operatorname{b}\) \(\operatorname{c}\) \(\operatorname{1}\)
\(\operatorname{b}\) \(\operatorname{b}\) \(\operatorname{c}\) \(\operatorname{1}\) \(\operatorname{a}\)
\(\operatorname{c}\) \(\operatorname{c}\) \(\operatorname{1}\) \(\operatorname{a}\) \(\operatorname{b}\)


\(\text{Table 34.2}~~\text{Regular Representation of the Group}~Z_4(\cdot)\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(\operatorname{1}\) \(\{\!\) \((\operatorname{1}, \operatorname{1}),\) \((\operatorname{a}, \operatorname{a}),\) \((\operatorname{b}, \operatorname{b}),\) \((\operatorname{c}, \operatorname{c})\) \(\}\!\)
\(\operatorname{a}\) \(\{\!\) \((\operatorname{1}, \operatorname{a}),\) \((\operatorname{a}, \operatorname{b}),\) \((\operatorname{b}, \operatorname{c}),\) \((\operatorname{c}, \operatorname{1})\) \(\}\!\)
\(\operatorname{b}\) \(\{\!\) \((\operatorname{1}, \operatorname{b}),\) \((\operatorname{a}, \operatorname{c}),\) \((\operatorname{b}, \operatorname{1}),\) \((\operatorname{c}, \operatorname{a})\) \(\}\!\)
\(\operatorname{c}\) \(\{\!\) \((\operatorname{1}, \operatorname{c}),\) \((\operatorname{a}, \operatorname{1}),\) \((\operatorname{b}, \operatorname{a}),\) \((\operatorname{c}, \operatorname{b})\) \(\}\!\)


\(\text{Table 35.1}~~\text{Additive Presentation of the Group}~Z_4(+)\)
\(+\!\) \(\operatorname{0}\) \(\operatorname{1}\) \(\operatorname{2}\) \(\operatorname{3}\)
\(\operatorname{0}\) \(\operatorname{0}\) \(\operatorname{1}\) \(\operatorname{2}\) \(\operatorname{3}\)
\(\operatorname{1}\) \(\operatorname{1}\) \(\operatorname{2}\) \(\operatorname{3}\) \(\operatorname{0}\)
\(\operatorname{2}\) \(\operatorname{2}\) \(\operatorname{3}\) \(\operatorname{0}\) \(\operatorname{1}\)
\(\operatorname{3}\) \(\operatorname{3}\) \(\operatorname{0}\) \(\operatorname{1}\) \(\operatorname{2}\)


\(\text{Table 35.2}~~\text{Regular Representation of the Group}~Z_4(+)\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(\operatorname{0}\) \(\{\!\) \((\operatorname{0}, \operatorname{0}),\) \((\operatorname{1}, \operatorname{1}),\) \((\operatorname{2}, \operatorname{2}),\) \((\operatorname{3}, \operatorname{3})\) \(\}\!\)
\(\operatorname{1}\) \(\{\!\) \((\operatorname{0}, \operatorname{1}),\) \((\operatorname{1}, \operatorname{2}),\) \((\operatorname{2}, \operatorname{3}),\) \((\operatorname{3}, \operatorname{0})\) \(\}\!\)
\(\operatorname{2}\) \(\{\!\) \((\operatorname{0}, \operatorname{2}),\) \((\operatorname{1}, \operatorname{3}),\) \((\operatorname{2}, \operatorname{0}),\) \((\operatorname{3}, \operatorname{1})\) \(\}\!\)
\(\operatorname{3}\) \(\{\!\) \((\operatorname{0}, \operatorname{3}),\) \((\operatorname{1}, \operatorname{0}),\) \((\operatorname{2}, \operatorname{1}),\) \((\operatorname{3}, \operatorname{2})\) \(\}\!\)


Sign Relations


\(\text{Table 1.} ~~ \text{Sign Relation of Interpreter A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 2.} ~~ \text{Sign Relation of Interpreter B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 36.} ~~ \text{Semantics for Higher Order Signs}\!\)
\(\text{Object Denoted}\!\) \(\text{Equivalent Signs}\!\)

\(\begin{matrix} \text{A} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} & = & {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\langle} \text{B} {}^{\rangle} & = & {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{A} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{A} {}^{\rangle\prime\prime} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{B} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{B} {}^{\rangle\prime\prime} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{i} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{i} {}^{\rangle\prime\prime} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{u} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{u} {}^{\rangle\prime\prime} \end{matrix}\)


\(\text{Table 37.} ~~ \text{Sign Relation Containing a Higher Order Sign}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \text{s} \end{matrix}\)

\(\begin{matrix} \text{s} \\[2pt] \ldots \\[2pt] \text{t} \end{matrix}\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \ldots \end{matrix}\)


\(\text{Table 38.} ~~ \text{Sign Relation for a Succession of Higher Order Signs (1)}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} x \\[2pt] {}^{\langle} x {}^{\rangle} \\[2pt] {}^{\langle\langle} x {}^{\rangle\rangle} \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} {}^{\langle} x {}^{\rangle} \\[2pt] {}^{\langle\langle} x {}^{\rangle\rangle} \\[2pt] {}^{\langle\langle\langle} x {}^{\rangle\rangle\rangle} \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \ldots \\[2pt] \ldots \end{matrix}\)


\(\text{Table 39.} ~~ \text{Sign Relation for a Succession of Higher Order Signs (2)}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} x \\[2pt] s_1 \\[2pt] s_2 \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} s_1 \\[2pt] s_2 \\[2pt] s_3 \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \ldots \\[2pt] \ldots \end{matrix}\)


\(\text{Table 40.} ~~ \text{Reflective Origin} ~ \operatorname{Ref}^0 L(\text{A})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)


\(\text{Table 41.} ~~ \text{Reflective Origin} ~ \operatorname{Ref}^0 L(\text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)


\(\text{Table 42.} ~~ \text{Higher Ascent Sign Relation} ~ \operatorname{Ref}^1 L(\text{A})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)


\(\text{Table 43.} ~~ \text{Higher Ascent Sign Relation} ~ \operatorname{Ref}^1 L(\text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)


\(\text{Table 44.} ~~ \text{Higher Import Sign Relation} ~ \operatorname{HI}^1 L(\text{A})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)


\(\text{Table 45.} ~~ \text{Higher Import Sign Relation} ~ \operatorname{HI}^1 L(\text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)


\(\text{Table 46.} ~~ \text{Higher Order Sign Relation for} ~ Q(\text{A}, \text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} L {}^{\rangle} \\ {}^{\langle} L {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} L {}^{\rangle} \\ {}^{\langle} L {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} (( & {}^{\langle} \text{A} {}^{\rangle} & , & \text{A} & ), & \text{A} & ) \\ (( & {}^{\langle} \text{A} {}^{\rangle} & , & \text{B} & ), & \text{A} & ) \\ (( & {}^{\langle} \text{B} {}^{\rangle} & , & \text{A} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{B} {}^{\rangle} & , & \text{B} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{i} {}^{\rangle} & , & \text{A} & ), & \text{A} & ) \\ (( & {}^{\langle} \text{i} {}^{\rangle} & , & \text{B} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{u} {}^{\rangle} & , & \text{A} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{u} {}^{\rangle} & , & \text{B} & ), & \text{A} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \end{matrix}\)


\(\text{Table 48.1} ~~ \operatorname{ER}(L_\text{A}) : \text{Extensional Representation of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)


\(\text{Table 48.2} ~~ \operatorname{ER}(\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, \text{A}) \\ ({}^{\langle} \text{i} {}^{\rangle}, \text{A}) \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, \text{B}) \\ ({}^{\langle} \text{u} {}^{\rangle}, \text{B}) \end{matrix}\)


\(\text{Table 48.3} ~~ \operatorname{ER}(\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \end{matrix}\)


\(\text{Table 49.1} ~~ \operatorname{ER}(L_\text{B}) : \text{Extensional Representation of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)


\(\text{Table 49.2} ~~ \operatorname{ER}(\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, \text{A}) \\ ({}^{\langle} \text{u} {}^{\rangle}, \text{A}) \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, \text{B}) \\ ({}^{\langle} \text{i} {}^{\rangle}, \text{B}) \end{matrix}\)


\(\text{Table 49.3} ~~ \operatorname{ER}(\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \end{matrix}\)


Type Tables


\(\text{Table 47.1} ~~ \text{Basic Types for ERs and IRs of Sign Relations}\!\)
\(\text{Type}\!\) \(\text{Symbol}\!\)

\(\begin{array}{l} \text{Property} \\ \text{Sign} \\ \text{Set} \\ \text{Triple}\\ \text{Underlying Element} \end{array}\)

\(\begin{matrix} P \\ \underline{S} \\ S \\ T \\ U \end{matrix}\)


\(\text{Table 47.2} ~~ \text{Derived Types for ERs of Sign Relations}\!\)
\(\text{Type}\!\) \(\text{Symbol}\!\) \(\text{Construction}\!\)
\(\text{Relation}\!\) \(R\!\) \(S(T(U))\!\)


\(\text{Table 47.3} ~~ \text{Derived Types for IRs of Sign Relations}\!\)
\(\text{Type}\!\) \(\text{Symbol}\!\) \(\text{Construction}\!\)
\(\text{Relation}\!\) \(P(R)\!\) \(P(S(T(U)))\!\)