Difference between revisions of "Truth table"

MyWikiBiz, Author Your Legacy — Saturday November 23, 2024
Jump to navigationJump to search
(table colors → table body (#f8f8ff = ghostwhite) table head (#e6e6ff = blue gray))
(+ [document history])
Line 236: Line 236:
 
<br>
 
<br>
  
==See also==
+
==Logical operators==
 
 
===Logical operators===
 
  
 
{{col-begin}}
 
{{col-begin}}
Line 253: Line 251:
 
{{col-end}}
 
{{col-end}}
  
===Related topics===
+
==Related topics==
  
 
{{col-begin}}
 
{{col-begin}}
Line 272: Line 270:
 
* [[Zeroth order logic]]
 
* [[Zeroth order logic]]
 
{{col-end}}
 
{{col-end}}
 +
 +
==Document history==
 +
 +
<br><sharethis />
  
 
[[Category:Combinatorics]]
 
[[Category:Combinatorics]]
Line 284: Line 286:
 
[[Category:Philosophy]]
 
[[Category:Philosophy]]
 
[[Category:Semiotics]]
 
[[Category:Semiotics]]
 
<sharethis />
 

Revision as of 18:10, 5 April 2010

A truth table is a tabular array that illustrates the computation of a boolean function, that is, a function of the form \(f : \mathbb{B}^k \to \mathbb{B},\) where \(k\!\) is a non-negative integer and \(\mathbb{B}\) is the boolean domain \(\{ 0, 1 \}.\!\)

Logical negation

Logical negation is an operation on one logical value, typically the value of a proposition, that produces a value of true when its operand is false and a value of false when its operand is true.

The truth table of NOT p (also written as ~p or ¬p) is as follows:


Logical Negation
p ¬p
F T
T F


The logical negation of a proposition p is notated in different ways in various contexts of discussion and fields of application. Among these variants are the following:


Variant Notations
Notation Vocalization
\(\bar{p}\) bar p
\(p'\!\) p prime,

p complement

\(!p\!\) bang p


Logical conjunction

Logical conjunction is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both of its operands are true.

The truth table of p AND q (also written as p ∧ q, p & q, or p\(\cdot\)q) is as follows:


Logical Conjunction
p q p ∧ q
F F F
F T F
T F F
T T T


Logical disjunction

Logical disjunction, also called logical alternation, is an operation on two logical values, typically the values of two propositions, that produces a value of false if and only if both of its operands are false.

The truth table of p OR q (also written as p ∨ q) is as follows:


Logical Disjunction
p q p ∨ q
F F F
F T T
T F T
T T T


Logical equality

Logical equality is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both operands are false or both operands are true.

The truth table of p EQ q (also written as p = q, p ↔ q, or p ≡ q) is as follows:


Logical Equality
p q p = q
F F T
F T F
T F F
T T T


Exclusive disjunction

Exclusive disjunction, also known as logical inequality or symmetric difference, is an operation on two logical values, typically the values of two propositions, that produces a value of true just in case exactly one of its operands is true.

The truth table of p XOR q (also written as p + q, p ⊕ q, or p ≠ q) is as follows:


Exclusive Disjunction
p q p XOR q
F F F
F T T
T F T
T T F


The following equivalents can then be deduced:

\[\begin{matrix} p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\ \\ & = & (p \lor q) & \land & (\lnot p \lor \lnot q) \\ \\ & = & (p \lor q) & \land & \lnot (p \land q) \end{matrix}\]

Logical implication

The logical implication and the material conditional are both associated with an operation on two logical values, typically the values of two propositions, that produces a value of false if and only if the first operand is true and the second operand is false.

The truth table associated with the material conditional if p then q (symbolized as p → q) and the logical implication p implies q (symbolized as p ⇒ q) is as follows:


Logical Implication
p q p ⇒ q
F F T
F T T
T F F
T T T


Logical NAND

The logical NAND is a logical operation on two logical values, typically the values of two propositions, that produces a value of false if and only if both of its operands are true. In other words, it produces a value of true if and only if at least one of its operands is false.

The truth table of p NAND q (also written as p | q or p ↑ q) is as follows:


Logical NAND
p q p ↑ q
F F T
F T T
T F T
T T F


Logical NNOR

The logical NNOR is a logical operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both of its operands are false. In other words, it produces a value of false if and only if at least one of its operands is true.

The truth table of p NNOR q (also written as p ⊥ q or p ↓ q) is as follows:


Logical NNOR
p q p ↓ q
F F T
F T F
T F F
T T F


Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Document history


<sharethis />